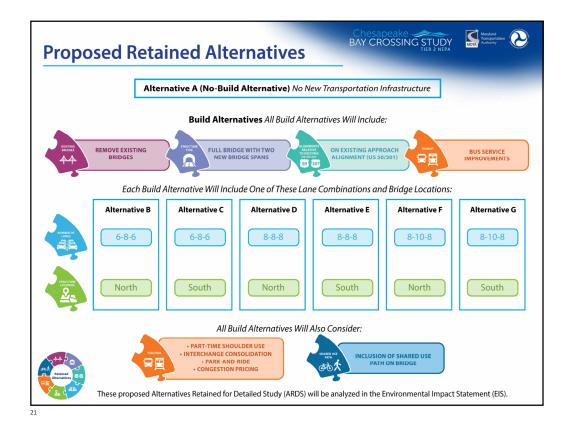
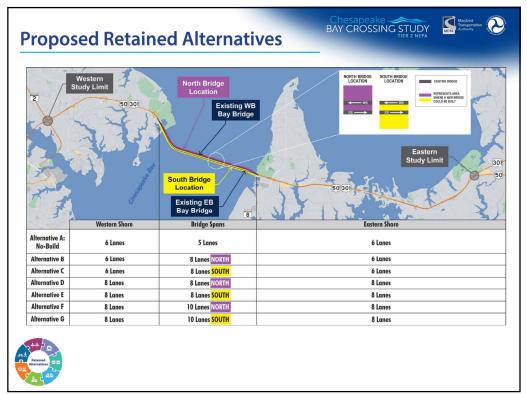
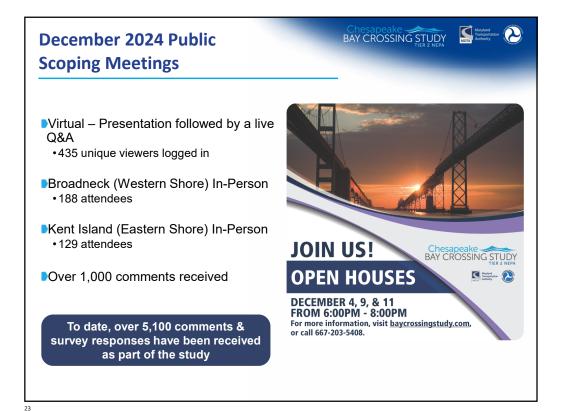
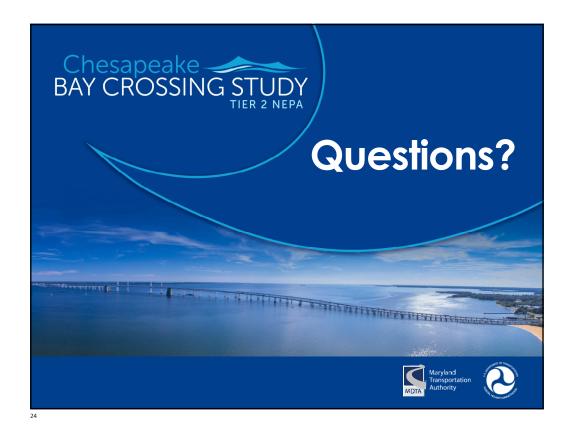


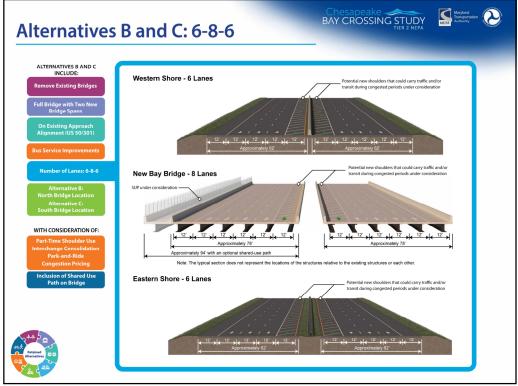
	ne combinatio	ons studied a	re shown usi	ing three num	nber	s. For examp	ole:			
				6-8-6	_	_				
		\\/o	stern Shore	Bay Crossi		Eastern	Shore			
		vve:	stern shore	Bay CI USSI	ng	Lasterns	SILOIE			
The ex	isting Bay Bri	dae has less	capacity that	n the approa	ch ro	oadwavs due	e to vertical ar	ade. lack of s	houlders.	
and we	eather impact	s to two-wav	operations.	vhich is why	som	ne combinati	ons have a h	igher numbe	r of lanes	
on the										
011 110	and get									
Based	on analysis	the 6-6-6 ar	nd 10-10-10	lane combir	natio	ons are not l	being advan	iced		
Buoou	,						<u> </u>			
	Non-Summer Weekday (Tuesdays & Wednesdays)			· ·		Summer Weekend Day				
		Eastbound		Westbound		Eacthours	d (Fridays)	Westbound (Sundays)		
	Eastb	ound	west	Jounu		Lastbourn	u (i fiuays)		1	
Scenario	Eastb Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours)	Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours)		Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours)	Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours)	
Scenario	Maximum Queue	Duration of Queues > 1 Mile	Maximum Queue	Duration of Queues > 1 Mile		Maximum Queue	Duration of Queues > 1 Mile (Hours)		Queues > 1 Mile	
Scenario Existing*	Maximum Queue	Duration of Queues > 1 Mile (Hours)	Maximum Queue	Duration of Queues > 1 Mile		Maximum Queue	Duration of Queues > 1 Mile (Hours)	(miles)	Queues > 1 Mile	
	Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours) Existing (2022)	Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours)		Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours) Existing 8	(miles) g (2022)	Queues > 1 Mile (Hours)	
	Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours) Existing (2022) 0	Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours)		Maximum Queue (miles)	Duration of Queues > 1 Mile (Hours) Existing 8	(miles) g (2022) 3.5	Queues > 1 Mile (Hours)	
Existing*	Maximum Queue (miles) 0	Duration of Queues > 1 Mile (Hours) Existing (2022) 0 Projected (2045)	Maximum Queue (miles) 0	Duration of Queues > 1 Mile (Hours) 0		Maximum Queue (miles) 4.8	Duration of Queues > 1 Mile (Hours) Existing 8 Projecte	(miles) g (2022) 3.5 ed (2045)	Queues > 1 Mile (Hours) 8	
Existing* No-Build*	Maximum Queue (miles) 0 4.1	Duration of Queues > 1 Mile (Hours) Existing (2022) 0 Projected (2045) 4	Maximum Queue (miles) 0 4.9	Duration of Queues > 1 Mile (Hours) 0 11		Maximum Queue (miles) 4.8 >10	Duration of Queues > 1 Mile (Hours) Existing 8 Projecte 14	(miles) g (2022) 3.5 ed (2045) >10	Queues > 1 Mile (Hours) 8 14	
Existing* No-Build* 6-6-6	Maximum Queue (miles) 0 4.1 4.3	Duration of Queues > 1 Mile (Hours) Existing (2022) 0 Projected (2045) 4 4	Maximum Queue (miles) 0 4.9 1.2	Duration of Queues > 1 Mile (Hours) 0 11 2		Maximum Queue (miles) 4.8 >10 >10	Duration of Queues > 1 Mile (Hours) Existing 8 Projecte 14 14	(miles) g (2022) 3.5 ed (2045) >10 >10	Queues > 1 Mile (Hours) 8 14 14	
Existing* No-Build* 6-6-6 6-8-6	Maximum Queue (miles) 0 4.1 4.3 0.0	Duration of Queues > 1 Mile (Hours) Existing (2022) 0 Projected (2045) 4 4 0	Maximum Queue (miles) 0 4.9 1.2 0.0	Duration of Queues > 1 Mile (Hours) 0 11 2 0		Maximum Queue (miles) 4.8 >10 >10 7.3	Duration of Queues > 1 Mile (Hours) Existing 8 Projecte 14 14 14 10	(miles) g (2022) 3.5 ed (2045) >10 >10 8.0	Queues > 1 Mile (Hours) 8 14 14 10	

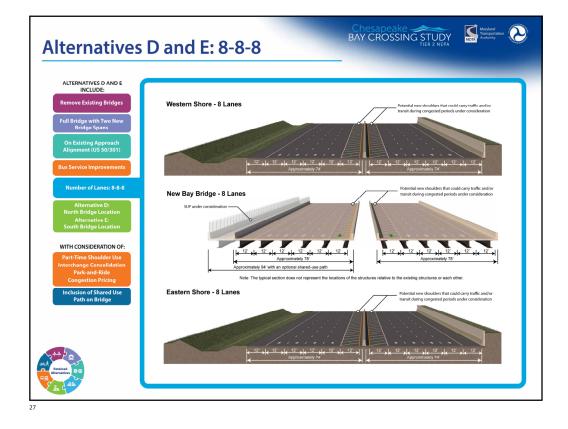


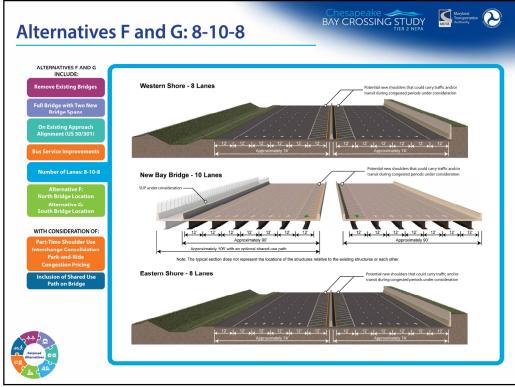



<image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>









Structure Type: Tunnel		sapeake CROSSING STUDY TIER 2 NEP/	Maryland Tansportation Authority	
 NOT RETAINED Substantial environmental impacts to the Bay/resources on shorelines. Requires large ventilation islands or larger/ additional bores. Mobility challenges: Cannot accommodate a shared use path. Restrictions on hazardous materials. 	Steeper grades resulting in reduced speeds for trucks. Less flexibility for maintenance of traffic and incident management. Tunnel would be 2 to 3.5 times more expensive 8 Lanes 10 Lanes Bridge 57.3 billion Station 58.4 billion Tunnel 517.0 billion			
Tunnel Ty	rpes Evaulated Bored	Tunnel		

Transit Options (Ferry, Rail, and BRT)

× NOT RETAINED

Ferry

Vehicular or passenger ferry.

- Ferry service would reduce Bay Bridge traffic volume by 0.7% to 1.1%
- Ferry alternatives would not make substantial improvements to capacity or travel times in combination with a new bridge.

- Commuter rail, light rail transit, or heavy rail transit across a new bridge.
- Larger foundations and extensive infrastructure would be needed to connect to existing rail facilities.
- Rail would have extensive environmental impacts and additional cost to provide the new infrastructure.
- Rail would reduce Bay Bridge traffic volume by roughly 0.3% to 0.6%
- Rail would not make substantial improvements to congestion or travel times in combination with a new bridge.

Bus Rapid Transit (BRT)

BRT in a dedicated transit lane across a new bridge providing reliable, convenient and frequent service.

Maryland Transportati Authority

- Appropriate transit connections for new BRT would be many miles away, requiring new infrastructure with environmental impacts and additional cost.
- BRT would reduce Bay Bridge traffic volume by roughly 0.3% to 0.6%
- BRT would not make substantial improvements to congestion or travel times in combination with a new bridge.

Engaging the Community

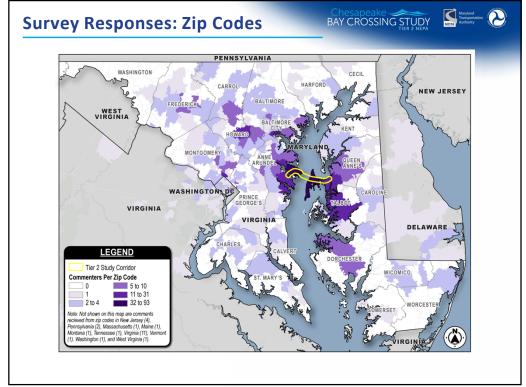
MDTA Commitment:

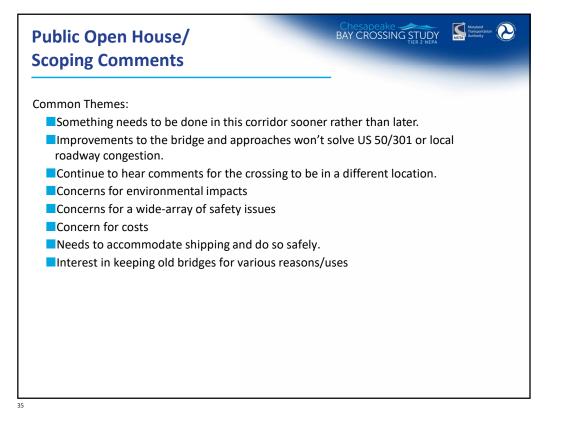
The MDTA is committed to a comprehensive public engagement program that stresses collaboration with our key stakeholders and local community partners. We encourage the public to:

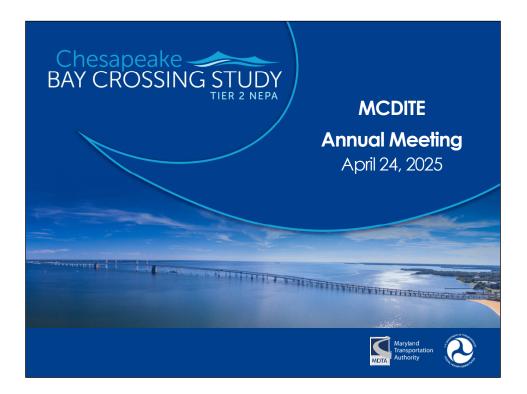
- submit their comments,
- join the mailing list,
- fill out our surveys that help shape the study, and
- spread the word to others about the study.

Who We've Engaged:

- Annapolis Pride Festival and Parade
- Grasonville Community Center Small Business Expo
- YMCA Healthy Kids Day
- Annapolis Veteran Center Resource Fair and Community Open House
- Grasonville VFD Spring Vendor Fair
- Annapolis Bike to Work Day
- Annapolis Health Fair and Listening Session
- QA County Annual Senior Summit Day
- Kennard African American Cultural Heritage Center Juneteenth Event
- Celebrate Annapolis Juneteenth
- State of Black Business Annapolis
- Queen Anne's County Town Hall
- The Great Chesapeake Bay Swim
- Asian American Festival
- Rommel's Ace Home Center
- Kent Island True Value Block Party
- Farmers Markets (Anne Arundel and Queen Anne's counties)
- Fiesta Latina


Chesapeake BAY CROSSING STUDY TIFR 2 NERA


- Es Mi Parque Sandy Point State Park
- Annapolis Family Day Festival
- National Night Out Annapolis
- Queen Anne's County Fair
- Kunta Kinte Heritage Festival
- Anne Arundel County Fair
- Bay Bridge Run


Hope to see you soon!

If your community/organization has an event you'd like us to attend, please email <u>info@baycrossing.com</u> with details.

Project Website: https://baycrossingstudy.com/public-engagement/previous-meetings/december-2024-open-houses