

2025	Dela	wa	ire	Tota	l Fata	lit	ies	s		
		as o	f 4	23/202	5					
	2025			2024				2023		
		4		<u>(D</u>	Totals	_	¥ ۲	TD	Totals	
Fatalities	23	36	4	-36%	130	50	¥	-54%	137	
Delaware Residents	17	32	¥	-47%	110	39	\downarrow	-56%	110	BE UELAWAKE.
Vahiela Occupant	12	22	SU	n Types 4104	65	25		6204	80	
Pedestrian	8	4	L.	-41%	3/	30	¥	-03%	28	
Bicyclist		2	Ŭ	-50%	5	2	Ţ	-50%	5	
Motorcyclist	0	2	Į,	-100%	21	4	¥	-100%	14	BE A HERO
Other Person Type	1	1	Π	0%	5	0	↑	100%	1	TOWARD ZERO
		Cr	asl	Types						BEDELAWARE.DELDOT.GOV
Curve Related	2	4	\mathbf{V}	-50%	23	10	1	-80%	28	
Roadway Departure	9	13	$\mathbf{\downarrow}$	-31%	42	24	$\mathbf{\Psi}$	-63%	69	
Intersection Related	5	11	$\mathbf{\downarrow}$	-55%	48	14	$\mathbf{\Psi}$	-64%	37	
Median Crossover	0	0	Ц	N/A	0	3	1	- 100 %	8	
Wrong Way	2	1	↑	100 %	4	0	↑	100%	1	
Work Zone	1	2	1	-50 %	5	3	1	-67 %	9	

Agenda 1. Background - Federal Guidelines 2. Mission - DelDOT's Program & Strategy 2. Methods - Project Screening and Performance Assessment Processes 3. Programming - Project Selection and Reporting Processes

©Jacobs 2020

Background // Regulatory Framework

- Origin Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991.
- The Fixing America's Surface Transportation (FAST) Act of 2015 (23 USC §149) lists of eligible projects
- A State's ability to use CMAQ funds is dependent on each county's Clean Air Act status

Congestion Reduction and Traffic Flow Improvements Travel Demand Management and ITS Transportation Control Measures Transit Improvements Public Education & Outreach Training Inspection and Maintenance Programs

Diesel Engine Retrofits & Advanced Truck Technologies

Idle Reduction

Intermodal Freight Operations

Alternate Fuels and Vehicles Innovative Projects Rideshare & Carpooling

Bike & Ped Facilities and Programs

、

7

7

Examples of CMAQ Eligible Projects & Programs

Background // Regulatory Framework

- The toxins targeted by the CMAQ program are derived from the Clean Air Act
 - Particulate Matter, 2.5 micrometers (PM_{2.5})
 - Ozone Precursors
 - Volatile Organic Compounds (VOC)
 - Nitrogen Oxides (NO_X)
 - Particulate Matter, 10 micrometers (PM₁₀)
 - Carbon Monoxide (CO)

©Jacobs 2020

9

Mission // Core Values

- CMAQ is a performance-driven program, which emphasizes transparency
- Built in reporting requirements designed to foster accountability
- Funding can be used for planning, engineering, and construction
- Most projects which address reoccurring congestion capacity are eligible
- Traffic operations statistics are important to estimate emission reduction.

Photo Credit: J. Paniati, Operational Solutions to Traffic Congestion, Public Roads, FHWA, November 2004, retrieved from <u>https://www.fhwa.dot.gov/publications/publicroads/04nov/01.cfm</u>

©Jacobs 2020

11

11

Mission // DelDOT's Strategy Provide a stable source of funding for active transportation facilities Fund the expansion of the State's ITS network Provide supplemental funding for traffic flow improvements Subsidize the State's Travel Demand Management Program 12 ©Jacobs 2020

Mission // Priority Toxins

Source	Health Impacts
Reactions between sulfur dioxide and nitrogen oxides	Fine particles become lodged deep in lung tissue.
enitted non-internal compusition engines	Pulmonary and respiratory stress leading to aggravated asthma, and increased risk of heart and lung disease and heart attacks.
Combustion of transportation fuels	Airway irritation and difficulty breathing Acute and chronic asthma Increased susceptibility to respiratory infections
Transportation fuels, hydraulic fluids, and solvents	Eye, nose, and throat irritation Liver, kidney, and nervous system damage
Reactions between NO_{x} and VOCs in the atmosphere	Airway irritation and difficulty breathing Aggravated asthma, emphysema, and chronic bronchitis Increased susceptibility to respiratory infections
	Source Reactions between sulfur dioxide and nitrogen oxides emitted from internal combustion engines Combustion of transportation fuels Transportation fuels, hydraulic fluids, and solvents Reactions between NO _x and VOCs in the atmosphere

Methods // Core Concepts

- Most emissions reduction estimates are based heavily on predicted changes in traffic operations statistics, including:
 - Traffic volumes (AADT or peak/off peak volumes)
 - Free flow travel time
 - Average travel time delay (peak hour or daily average)
- The geographic scope of traffic operations analysis typically matches the project limits
- Emission reduction estimates reflect only the proposed project, other proposed actions may not be included.
- All emissions reduction estimate are generated using either the EPA Motor Vehicle Emission Simulator (MOVES) or one of FHWA's CMAQ toolkits.

16

Methods <mark>// Evaluation Typ</mark>)es
Active Transportation	 Land use and transportation network characteristics determines mode- shift rate.
Rideshare	Participants' commute logs describe trip reduction
ITS	 Traffic operational characteristics and device type determine potential for delay reduction
Traffic Flow Improvements	Traffic simulations determine changes in operational conditions
17	©Jacobs 2020

Methods // Active Transportation

- Eligible Improvements
 - Sidewalks and crosswalks
 - Shared use paths and bridges
 - Bike lanes
 - Bike parking
- All improvements must provide new or expanded system capacity. Facility replacement in kind is not permitted.
- Data needed for evaluation
 - Project scope
 - Project limits
 - Opening year

Methods // Active Transportation

- Based on Trust for Public Lands' Methodology as related to bike and ped projects
- Uses combination of transportation and land use factors to estimate mode-shift rates.

Factors	Influence on Mode-Shift Rates
Proximity to activity centers	<i>Positive</i> The mode-shift rate increases as the number of nearby activity centers goes up.
Proximity to university campuses	<i>Positive</i> The presence of a university nearby increases the mode-shift rate
Traffic volumes on adjacent route	<i>Negative</i> The mode-shift rate decreases as the traffic volume goes up
Length of proposed facility	<i>Positive</i> The mode-shift rate increase as the length of the proposed facility goes up
Soparato ostimatos for bi	kes and nedestrians

strians uikes

19	©Jacobs 2020

Methods // Rideshare

- Emissions estimates based on vehicle trips eliminated through ridesharing program
- Program information collected from AgileMile application
- Only the rideshare trips from each fiscal year's new members are included in the emissions reduction estimate

Methods // ITS	
 Eligible Improvements: Adaptive Traffic Control Systems Congestion and traffic flow improvements VMS Signs AI-TOMS Program Signal Timing Fiber and Bluetooth Systems Managed Lanes 	
 Data Requirements Existing delay (daily average or peak and off peak) AADT Corridor length Truck percentage Projected delay reduction 	
23	©Jacobs 2020

Methods // ITS

- Performance is assessed per installation location for each direction of travel.
- Proposed installations are scored based on projected device function and traffic operational factors, including..

1 400015	Influence on Scoring Protocol
Traffic Volumes	<i>Positive</i> Installation score increases as the AADT goes up
Duration of Congestion	<i>Positive</i> Installation score increases as the annual number of hours spent under congested condition goes up
Frequency of Congestion	<i>Positive</i> Installation score increases as the average daily PTI and TTI values go up
Traffic Operations Impact	<i>Positive</i> Installation score increases as it's ability to augment traffic operations goes up.

 Method // Traffic Flow Improvements Eligible Improvements Intersection Improvements Roundabouts Data Requirements Existing delay (daily average or peak and off peak) AADT Corridor length Truck percentage Projected delay reduction The build year is typically used as the assessment year, but a more immediate period can be used. 	
25	ອີJacobs 2020

Methods // Traffic Flow Improvements

- Emissions Reductions Estimates are based on travel delay reductions predicted through micro-simulations.
- Holding other variables constant, emission reductions increase as the travel delay decreases.

26

